Abstract
Abstract The low flowback efficiency of fracturing fluid would severely increase water saturation in a near-fracture formation and limit gas transport capacity in the matrix of a shale gas reservoir. Formation heat treatment (FHT) is a state-of-the-art technology to prevent water blocking induced by fracturing fluid retention and accelerate gas desorption and diffusion in the matrix. A comprehensive understanding of its formation damage removal mechanisms and determination of production improvement is conducive to enhancing shale gas recovery. In this research, the FHT simulation experiment was launched to investigate the effect of FHT on gas transport capacity, the multi-field coupling model was established to determine the effective depth of FHT, and the numerical simulation model of the shale reservoir was established to analyze the feasibility of FHT. Experimental results show that the shale permeability and porosity were rising overall during the FHT, the L-1 permeability increased by 30- 40 times, the L-2 permeability increased by more than 100 times. The Langmuir pressure increased by 1.68 times and the Langmuir volume decreased by 26%, which means the methane desorption efficiency increased. Results of the simulation demonstrate that the FHT process can practically improve the effect of hydraulic fracturing and significantly increase the well production capacity. The stimulation mechanisms of the FHT include thermal stress cracking, organic matter structure changing, and aqueous phase removal. Furthermore, the special characteristics of the supercritical water such as the strong oxidation, can not be ignored, due to the FHT can assist the retained hydraulic fracturing fluid to reach the critical temperature and pressure of water and transform to the supercritical state. The FHT can not only alleviate the formation damage induced by the fracturing fluid, but also make good use of the retained fracturing fluid to enhance the permeability of a shale gas reservoir, which is an innovative method to dramatically enhance gas transport capacity in shale matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.