Abstract

The olive oil industry faces a major problem of treating the wastewater with high organic content and safe disposal. Olive oil industrial wastewater (OOIWW) consists of highly toxic environmental pollutants with high salinity. Saline olive oil industrial wastewater was treated using halophilic consortium in UMFC (upflow microbial fuel cell) mobilized with carbon felt as electrode. Total and soluble COD (chemical oxygen demand), total suspended solids and phenol content removal were studied at different organic loads (0.56, 0.77, 1.05, 1.26, 1.52 and 1.8 gCOD/L). UMFC with OOIWW was optimized at 1.52 gCOD/L for high organic removal and corresponding electricity production. Total COD, soluble COD, TSS and phenol removal were 91%, 89%, 78%, and complete removal of phenol was accomplished at the optimized organic load (1.52 gCOD/L). Correspondingly, the maximum bioenergy yield was 784 mV with 439 mW/m2 (power density) and 560 mA/m2 (current density), respectively. The presence of prominent halophilic exo-electrogens such as Ochrobactrum, Marinobacter, Rhodococcus and Bacillus potently treated the OOIWW and exhibited high energy yield.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call