Abstract

HACCP (hazard analysis and critical control points) principles were applied to evaluate the effectiveness of two water treatment facilities to continually produce potable water free of microbiological health hazards. This paper reports a hazard analyses protocol (microbiological hazards based on faecal coliforms (FC) and turbidity (TBY) as indicators) for critical control points (CCPs) within each facility. The CCPs were raw resource water, sedimentation, filtration and chlorine-disinfection. The aim was to determine the effectiveness of each CCP to remove the indicators from the water under treatment. Arbitrary critical performance limit targets (CPLTs) were set up for each CCP to determine to what extent each contributed to effective removal and to predict what the effect would be if any of the CCPs should fail. Health-related water quality guideline limits for expected health effects were applied and compliance measured at the 90th percentile. The raw resource river water used at both treatment facilities complied with raw resource water extraction CPLTs. The treated potable water complied with health-related drinking water guidelines. Sedimentation removed the largest proportion of the indicators from the raw water, but showed failure potential that could overload the consequent system. Filtration effectiveness at both treatment facilities showed potential to break down the overall effectiveness of the entire treatment facility, since the filter systems failed to meet their respective CPLTs. This left the disinfection phase to remove the remaining portion of indicators. Faecal coliforms appeared to be completely removed from post-chlorination samples. This indicated that both chlorine disinfection phases were 100% effective in meeting their disinfection CPLTs, despite having to "clean up" the indicator organisms that spilt over from the upstream CCPs. This, nevertheless, implied a risk of unsafe water release into distribution. CCPs at these treatment facilities had some difficulties in reducing the health-related risks to meet their respective CPLTs. Applying a HACCP programme would minimise the risk of contaminated water distribution in cases of system component failure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call