Abstract

The exact or projected form of the off-the-energy-shell Coulomb transition matrix (T-matrix), in the Daubechies first scalet basis, is used to calculate the Faddeev–Watson–Lovelace (FWL) amplitudes up to the second order, in the electron capture channel for the scattering of high-energy protons by atomic hydrogen. The phase, angular and energy dependence of the FWL partial amplitudes and differential cross sections are constructed. An analytical expression for the differential cross sections is presented as a function of energy and scattering angle. Finally, differential cross sections obtained by the exact and approximate Coulomb off-the-energy-shell T-matrix are compared with the available experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.