Abstract

Land subsidence is a common geological hazard. The long-term accumulation of land subsidence in Shanghai has caused economic loss to the city. Since the 1990s, the engineering structures have become a new cause of land subsidence. Many factors affect the process of land subsidence. Although such a process cannot be explicitly expressed by a mathematical formula, it is not a “black box” whose internal structure, parameters, and characteristics are unknown. Therefore, the grey theory can be applied to the prediction of land subsidence and provides useful information for the control of land subsidence. In this paper, a grey model (GM) GM (1, 1) with unequal time-intervals was used to predict the subsidence of a high-rise building in the Lujiazui area of Shanghai, and the results were compared with the monitored data. The prediction of subsidence was also corroborated by laboratory tests and the results were compared with measured data and the predicted data by the adaptive neuro-fuzzy inference system (ANFIS). It is found that the GM (1, 1) with unequal time-intervals is accurate and feasible for the prediction of land subsidence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.