Abstract

Prevention and control of the disastrous accident is the top priority of coal mine production safety. RBF and the combined grey neural network (CGNN) model are established. Combined with cascade-correlation (CC) and RBF-DDA algorithms, gas explosion impacting on coal mine production safety largely is analyzed. The analysis results show that gas explosion accident is caused by many reasons. The relationship between coal mine production and safety needs to be effectively coordinated. It is concluded that, at the beginning, CC and RBF-DDA algorithms are used to structure the initial hidden nodes to zero. Through the training process, the hidden units are added in the light of adaptive algorithm constantly. These units are of a higher classification accuracy and robustness, which, in the future, provides the basis for the deep application and study in coal mine safety and production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.