Abstract
Many literature reports suggest that drugs against multiple targets may overcome many limitations of single targets and achieve a more effective and safer control of the disease. However, design of multitarget drugs presents a great challenge. The present study demonstrates application of a novel Group based QSAR (GQSAR) method to assist in lead optimization of multikinase (PDGFR-beta, FGFR-1 and SRC) and scaffold hopping of multiserotonin target (serotonin receptor 1A and serotonin transporter) inhibitors. For GQSAR analysis, a wide variety of structurally diverse multikinase inhibitors (225 molecules) and multiserotonin target inhibitors (162 molecules) were collected from various literature reports. Each molecule in the data set was divided into four fragments (kinase inhibitors) and three fragments (serotonin target inhibitors) and their corresponding two-dimensional fragment descriptors were calculated. The multiresponse regression GQSAR models were developed for both the datasets. The developed GQSAR models were found to be useful for scaffold hopping and lead optimization of multitarget inhibitors. In addition, the developed GQSAR models provide important fragment based features that can form the building blocks to guide combinatorial library design in the search for optimally potent multitarget inhibitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.