Abstract

Groundwater modelling is an important tool that can be used to determine appropriate management strategies for groundwater conditions. It is useful in monitoring groundwater levels due to extensive exploitation as is presently done in the Otokiti area on the River Meme catchment, Lokoja, Nigeria. A conceptual model was developed using Groundwater Modelling System (GMS) software. The model was calibrated both in steady and transient states. The steady state calibration was done for March 2009, aquifer performance data while the transient model was calibrated for March 2016 aquifer data. Results from calibration showed values of hydraulic conductivity varying from 0.02 to 25.6 m/d while the recharge rates varied from 0.0001 to 0.0007 m/d. A predictive run was done from 2016 to 2026 where the model examined the response of the aquifer to abstractions under three different schemes. In Scheme A, the abstractions remained the same as that of the current year 2016. In Schemes B and C, abstractions were increased by 20% and 60% respectively over the 2016 rates. The results showed that there was very little decline in head for locations near the rivers at the eastern and western parts of the catchment. However, for locations in the central part of the study area, which were mostly residential, there was a gradual decrease in head of up to 6 m for scheme A, 6.5 m for scheme B and 6.8 m for scheme C. The implies that even if the rate of abstraction is increase by up to 60% i.e. at 122 m3/d, the groundwater system would still be sustainable as a main source of supply for domestic consumption. The volumetric budget of the study area for the three abstraction schemes also showed that the groundwater abstraction was generally less than the annual groundwater recharge. Consequently, more water is available in the formation which can be abstracted for future development without any appreciable loss of head.

Highlights

  • Water is essential for the survival of mankind

  • The groundwater resource is so huge that its occurrence and hydrological significance cannot be overlooked in the planning and management of water resources (Zakir et al, 2011)

  • Since the objective of this study is to investigate the effect of future groundwater abstractions, predictive simulations were performed under three different abstraction schemes

Read more

Summary

Introduction

The demand for water for agricultural, industrial and municipal usage has been on the increase. To meet these demands, surface and groundwater sources are required (Rastogi, 2007). The groundwater resource is so huge that its occurrence and hydrological significance cannot be overlooked in the planning and management of water resources (Zakir et al, 2011). Groundwater modelling is an important tool that can be used to determine appropriate management strategies for groundwater conditions in the areas where the hydrological cycles is predicted to be accelerated because of climate change (Mall et al, 2006). Researchers have adopted the use of MODFLOW, developed by the US Geological Survey (Harbaugh et al, 2000)

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.