Abstract
The present paper investigates the applicability of the Global Sensitivity Equation (GSE) method in the multidisciplinary synthesis of aeronautical vehicles. The GSE method provides an efficient approach for representing a large coupled system by smaller subsystems and accounts for the subsystem interactions by means of first-order behavior sensitivities. This approach was applied in an aircraft synthesis problem with performance constraints stemming from the disciplines of structures, aerodynamics, and flight mechanics. Approximation methods were considered in an attempt to reduce problem dimensionality and to improve the efficiency of the optimization process. The influence of efficient constraint representations, the choice of design variables, and design variable scaling on the conditioning of the system matrix was also investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.