Abstract
The feature selection process constitutes a commonly encountered problem of global combinatorial optimization. The process reduces the number of features by removing irrelevant and redundant data. This paper proposed a novel immune clonal genetic algorithm based on immune clonal algorithm designed to solve the feature selection problem. The proposed algorithm has more exploration and exploitation abilities due to the clonal selection theory, and each antibody in the search space specifies a subset of the possible features. Experimental results show that the proposed algorithm simplifies the feature selection process effectively and obtains higher classification accuracy than other feature selection algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.