Abstract

The independent component analysis has been commonly employed in hyperspectral unmixing. However, the success of this method is highly dependent on the independency of its sources assumption. Dependent component analysis (DECA) algorithm, which utilizes a Dirichlet mixture model, was developed to provide more adequate spectral unmixing of dependent sources. Estimation of the unknown model parameters using the expectation maximization algorithm in DECA resulted in some insufficiencies. DECAGibbs algorithm is introduced to improve unmixing accuracy by applying the Gibbs sampling method to the parameter estimation process of DECA, which is conducted in different manners of modeling the observations. Functionality of the DECAGibbs algorithm is examined through the artificial datasets and an AVIRIS image of Cuprite, Nevada, indicating better decomposition of mixed observations. Finally, the best performing model was employed in mineralogical mapping of the Lahroud region, northwest Iran, by a Hyperion image. The results represent the high reliability of the proposed method according to the geological studies of the area. Since the practical application of the mixture models relies upon the efficient estimation of their involved parameters, the performance of the DECA algorithm is improved by employing the Bayesian parameter estimation approaches in this research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.