Abstract

Geosynthetics are widely used for separation, protection, drainage, filtration and sealing. In addition, high-strength geogrids have been more and more successfully used in recent times for the construction of steep slopes and geogrid reinforced bridge abutments, the crossing of areas with soft soil by using geosynthetic encased sand columns and the bridging of areas susceptible to sinkholes. Particularly for the last case geosynthetics with additional features have been developed allowing a permanent monitoring of the deformations. The development of such intelligent geosynthetics with integrated chips and sensors for measuring strains, temperature or environmental conditions are by no means at its end. Geosynthetics of the future will be equipped with such additional functions enabling a permanent and non-destructive monitoring of structures built with geosynthetics. Anyhow, geogrid reinforcement constructions show significant advantages in terms of economic and ecological aspects against classical concrete structures. It is also well known from large-scale experiments and field tests that geosynthetic-reinforced constructions have a much higher bearing capacity than calculated and that the deformations are much lower than expected. Therefore, it is quite evident that the compound behavior of geosynthetic and soil is not yet completely understood. Recent research on this topic using large-scale triaxial- and biaxial- tests combined with a modern method of visualization of the movement of the soil particles tries to fill this gap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.