Abstract

New methods for fault-effect propagation and state justification that use finite-state-machine sequences are proposed for sequential circuit test generation. Distinguishing sequences are used to propagate the fault effects from the flip-flops to the primary outputs by distinguishing the faulty machine state from the fault-free machine state. Set, clear, and pseudoregister justification sequences are used for state justification via a combination of partial state justification solutions. Reengineering of existing finite-state machine sequences may be needed for specific target faults. Moreover, conflicts imposed by the use of multiple sequences may need to be resolved. Genetic-algorithm-based techniques are used to perform these tasks. Very high fault coverages have been obtained as a result of this technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.