Abstract

Application of genetic algorithms to determine heavy metal ions sorption dynamics on clinoptilolite bed In the last decade a growing interest was observed in low-cost adsorbents for heavy metal ions. Clinoptilolite is a mineral sorbent extracted in Poland that is used to remove heavy metal ions from diluted solutions. The experiments in this study were carried out in a laboratory column for multicomponent water solutions of heavy metal ions, i.e. Cu(II), Zn(II) and Ni(II). A mathematical model to calculate the metals' concentration of water solution at the column outlet and the concentration of adsorbed substances in the adsorbent was proposed. It enables determination of breakthrough curves for different process conditions and column dimensions. The model of process dynamics in the column took into account the specificity of sorption described by the Elovich equation (for chemical sorption and ion exchange). Identification of the column dynamics consisted in finding model coefficients β, KE and Deff and comparing the calculated values with experimental data. Searching for coefficients which identify the column operation can involve the use of optimisation methods to find the area of feasible solutions in order to obtain a global extremum. For that purpose our own procedure of genetic algorithm is applied in the study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.