Abstract

Quantitative structure-activity relationship (QSAR) analysis has been carried out with a series of 107 anti-HIV HEPT compounds with antiviral activity, which was performed by chemometrics methods. Bi-dimensional images were used to calculate some pixels and multivariate image analysis was applied to QSAR modelling of the anti-HIV potential of HEPT analogues by means of multivariate calibration, such as principal component regression (PCR) and partial least squares (PLS). In this paper, we investigated the effect of pixel selection by application of genetic algorithms (GAs) for the PLS model. GAs is very useful in the variable selection in modelling and calibration because of the strong effect of the relationship between presence/absence of variables in a calibration model and the prediction ability of the model itself. The subset of pixels, which resulted in the low prediction error, was selected by genetic algorithms. The resulted GA-PLS model had a high statistical quality (RMSEP = 0.0423 and R2 = 0.9412) in comparison with PCR (RMSEP = 0.4559, R2 = 0.7929) and PLS (RMSEP = 0.3275 and R2 = 0.0.8427) for predicting the activity of the compounds. Because of high correlation between values of predicted and experimental activities, MIA-QSAR proved to be a highly predictive approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.