Abstract

Acoustically induced secondary flows are applied to enhance lateral mass transfer beyond the relatively slow diffusion. This has the goal to reduce convective axial dispersion and the resulting band broadening which, in turn, limits the performance of column chromatography. Traditional approaches based on Taylor-Aris model are limited to one-dimensional rectilinear (unidirectional) tube- or channel-flows. We therefore apply the generalized dispersion theory (GDT) allowing for prediction of the dependence of potentially improved performance on the characteristics of the induced secondary flow, channel geometry and solute properties as well as providing qualitative physical insight into the role of lateral flows. Results corroborate agreement with our experimental observations (residual standard deviation, Sres = 3.88) and demonstrate the advantage of applying GDT relative to 3D time-dependent simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.