Abstract

The advancement of modern injection systems of diesel engines is related to a constant increase in the injection pressures generated by injection pumps. This translates into an improvement of the engine operation indexes, including the emission-related ones. Such an approach brings a series of problems related to the design, construction and durability of the injection system. Therefore, the authors asked whether the current market trend in injection systems is the only appropriate path to be taken. When searching for the answer, the authors decided to propose an innovative concept consisting of dissolving exhaust gas in diesel fuel with the use of an injection pump. Such a saturated solution, when flowing out of the injection nozzle, begins the process of releasing the gas dissolved in the fuel. This has a positive impact on the atomization process, hence the process of combustion. The aim of this paper stems from the previously performed research. Due to the nature of the phenomenon, it was necessary to propose a new design for the injection pump. For correct selection of the dimensions of the pumping section, it was of key importance to determine the coefficient of solubility and the bulk modulus of the solution of diesel fuel and exhaust gas. Aside from the description of the applied method and the results of the direct measurements, this paper presents the yet undescribed results of the measurements of the coefficient of solubility of different concentrations of exhaust gas in diesel fuel. The authors also investigated the influence of the amount of exhaust gas dissolved in the fuel on the bulk modulus of the solution. The final part of the paper is a description of a proprietary design of a hypocycloidal injection pump. The application of the innovative drive allows a correct dissolution of exhaust gas in the fuel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call