Abstract

Pumps consume nearly 8% of global electricity as the essential equipment for liquid transportation. A practical method for improving centrifugal pump energy efficiency is accurately predicting and controlling the pump operation status. However, current estimation methods for sensorless flow rate prediction have a significant error at low flow rate conditions. This study adds valve opening as the estimation model input variable, including motor shaft power and speed, to form a back-propagation neural network (BPNN) on an asynchronous motor-driven multistage centrifugal pump. By optimizing the initial weights and thresholds of BPNN, a GA-BPNN model was proposed to improve the prediction accuracy by using a genetic algorithm (GA). The results indicate that, with the addition of the valve opening as an input variable, the accuracy of BPNN-VO and GA-BPNN prediction improves significantly more than BPNN-NVO. Furthermore, the GA-BPNN model produces a significantly lower mean square error (MSE) and root mean square error (RMSE) than the original BPNN model. According to the experimental comparison and analysis, the absolute error of GA-BPNN between predicted flow rate and measured flow rate is less than 0.3 m3/h, the average relative error is less than 2%, and the relative error of low flow rate is less than 5%. This GA-BPNN estimation model significantly improves the accuracy of flow rate prediction, especially at small flow rates, and extends the scope of centrifugal pumps’ monitoring and control technology without flow sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.