Abstract

In the real-world manufacturing/distribution planning decision (MDPD) integration problems in supply chains, the environmental coefficients and parameters are normally imprecise due to incomplete and/or unavailable information. This work presents a fuzzy linear programming approach based on the possibility theory. It applies this approach to solve multi-product and multi-time period MDPD problems with imprecise goals and forecast demand by considering the time value of money of related operating cost categories. The proposed approach attempts to minimize the total manufacturing and distribution costs by considering the levels of inventory, subcontracting and backordering, the available machine capacity and labor levels at each source, forecast demand and available warehouse space at each destination. This study utilizes an industrial case study to demonstrate the feasibility of applying the proposed approach to practical MDPD problems. The primary contribution of this paper is a fuzzy mathematical programming methodology for solving the MDPD integration problems in uncertain environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.