Abstract
The work investigates neural network model for prediction of post-surgical treatment risks. The descriptors of the risk classifiers are formed on the basis of the analysis of the current-voltage characteristics of one, two and three biologically active points. The training and verification samples were formed by examining 120 patients with a diagnosis of benign prostatic hyperplasia. Of these, 62 patients were successfully operated on (class C1), 30 had various complications after surgery (class C2), 28 patients required additional treatment (class C3). The constructed classifiers showed a high quality of predicting critical conditions during surgical treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Biomechanics and Biomedical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.