Abstract
The management of cotton yield behavior in agricultural areas is a very important task because it influences and specifies the cotton yield production. An efficient knowledge-based approach utilizing the method of fuzzy cognitive maps (FCMs) for characterizing cotton yield behavior is presented in this research work. FCM is a modelling approach based on exploiting knowledge and experience. The novelty of the method is based on the use of the soft computing method of fuzzy cognitive maps to handle experts’ knowledge and on the unsupervised learning algorithm for FCMs to assess measurement data and update initial knowledge. The advent of precision farming generates data which, because of their type and complexity, are not efficiently analyzed by traditional methods. The FCM technique has been proved from the literature efficient and flexible to handle experts’ knowledge and through the appropriate learning algorithms can update the initial knowledge. The FCM model developed consists of nodes linked by directed edges, where the nodes represent the main factors in cotton crop production such as texture, organic matter, pH, K, P, Mg, N, Ca, Na and cotton yield, and the directed edges show the cause–effect (weighted) relationships between the soil properties and cotton field. The proposed method was evaluated for 360 cases measured for three subsequent years (2001, 2003 and 2006) in a 5 ha experimental cotton yield. The proposed FCM model enhanced by the unsupervised nonlinear Hebbian learning algorithm, was achieved a success of 75.55%, 68.86% and 71.32%, respectively for the years referred, in estimating/predicting the yield between two possible categories (“low” and “high”). The main advantage of this approach is the sufficient interpretability and transparency of the proposed FCM model, which make it a convenient consulting tool in describing cotton yield behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.