Abstract

Tinnitus, characterized by phantom sound perception, is a highly disruptive condition lacking clearly effective treatments. Its complex neural mechanisms are not fully elucidated. Functional near-infrared spectroscopy (fNIRS) is a promising neuroimaging tool well-suited for assessing tinnitus due to its quietness, portability, and ability to directly measure cortical hemodynamic responses. This study timely summarizes the recent applications of fNIRS in investigating tinnitus pathology, correlating neuroimaging biomarkers with symptom severity, and evaluating treatment efficacy. Further studies with larger samples are warranted to reproduce existing findings. Thus, fNIRS appears to be a promising tool in tinnitus research. Addressing technical limitations, optimizing control groups, advancing data analysis, integrating standardized, and individualized experimental protocols can facilitate the extended and robust utilization of fNIRS in tinnitus research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call