Abstract

The statistical technique of functional data analysis (FDA) is applied to a time series analysis of plankton monitoring data. The analysis is focused on revealing patterns in the seasonal cycle to assess interannual variability of several different taxonomic groups of plankton. Cell concentrations of diatom, dinoflagellate and zooplankton abundances from the Bay of Fundy, Canada provide the observations for analysis. FDA was performed on the log-transformed abundance data as a new approach for treating such types of sparse and noisy data. Differences in the seasonal progression were seen, with peak numbers, timings and abundance levels varying for the three groups as determined by curve registration and higher order derivatives using the objectively fit FDA curves. Nonmetric multidimensional scaling was used to capture seasonal variation among years. These results were further assessed in terms of dominant species and the relationships between groups for different seasons and years. It is anticipated that the easy to use, general and flexible technique of FDA could be applied to a wide variety of marine ecological data that are characterized by missing values and non-Gaussian distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.