Abstract

In situ FT-IR absorption spectroscopy was used as a diagnostic tool to evaluate the gas phase above a heterogeneous reaction, black liquor char combustion. Previously developed calculation methodologies were used to determine the CO and CO2 concentrations and the CO rotational temperatures from absorption spectra. Spectroscopically obtained gas temperatures and concentrations from laboratory-scale experiments were compared to thermocouple and NDIR measurements. Quantitative evaluations of the gas phase during these experiments indicated that gas temperatures can be measured with an accuracy of 2–3% at 450–750 K and gas concentrations can be measured with accuracies of better than 10% at gas concentrations between 0.3 and 1.3%. Gas temperatures obtained during pilot-scale combustion were between 1118 and 1183 K, while concentrations were between 0.35 and 0.76%. Differences among gas concentrations and temperatures calculated from the absorption spectra, compared to NDIR measurements and thermocouples, were greater than those from laboratory combustion due to the dynamics of the gas phase. The need is exemplified for a well-characterized combustion environment for effective use of FT-IR as a diagnostic tool for pilot-scale combustion and for advancing the fundamental understanding of combustion processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.