Abstract

The present paper describes the use of pressure derivative and second derivative of integral of pressure in a fractal reservoir with matrix participation with phase redistribution in a geological environment that are not possible by conventional techniques. The analysis of this type of data in reservoir characterization is known as “inverse problem” and one can obtain information about interwell and vertical permeability distribution in a reservoir. The fractal geometry in a dynamic pressure transient tests data plays a very vital role for heterogeneity characterization. The pressure transient response is analyzed for flow in a connected fracture network and fracture with matrix participation. The computer aided matching technique for both pressure and its derivative by nonlinear regression techniques are used in estimating the reservoir properties from measured drawdown/buildup and falloff pressure data of heterogeneous reservoir. In the present paper the fractional calculus approach has been utilized to solve the diffusivity equation with phase redistribution in fractal reservoir. The pressure solution of the diffusivity is in terms of Laplace space and its analytical inversion is not possible. We have obtained numerically inversion of the problem and the pressure, pressure derivative, integral of pressure and its first and second derivative has been calculated. The permeability estimated from pressure transient test data of a well are in good agreement with the identified the geological model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.