Abstract
Foam flooding by Foam Assisted Water-Alternating-Gas (FAWAG) is an important enhanced oil recovery method that has proven successful in experimental and pilot studies. The present study is carried out to monitor the movement of the foam front once injected into the porous medium. This study aims to investigate applications of resistivity waves to monitor foam propagation in a sandstone formation. In the present lab-scale experiments and simulations, resistivity measurements were carried out to monitor the progression of foam in a sand pack, and the relationships between foam injection time and resistivity, as well as brine saturation, were studied. The brine saturation from foam simulation using CMG STAR is exported to COMSOL and calculated true formation resistivity. A diagram was produced summarizing the progression of foam through the sand pack in the function of time, which enabled us to establish how foam progressed through a porous medium. A surfactant and brine mixture was injected into the sand pack, followed by nitrogen gas to generate the foam in situ. As foam progressed through the sand pack, resistance measurements were taken in three zones of the sand pack. The resistance was then converted into resistivity and finally into brine saturation. As foam travels through the sand pack, it is predicted to displace the brine initially in place. This gradually increases each zone's resistivity (decreases the brine saturation) by displacing the brine. Also, an increase in the surfactant concentration results in higher resistivity. Finally, a comparison of three different surfactant concentrations was evaluated in terms of resistivity results, water saturation, and foam propagation monitoring to obtain the optimum surfactant concentration involved in foam flooding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.