Abstract

Genetic mapping and the selection of closely linked molecular markers for important agronomic traits require efficient, large-scale genotyping methods. A semi-automated multifluorophore technique was applied for genotyping AFLP marker loci in barley and wheat. In comparison to conventional 33P-based AFLP analysis the technique showed a higher resolution of amplicons, thus increasing the number of distinguishable fragments. Automated sizing of the same fragment in different lanes or different gels showed high conformity, allowing subsequent unambigous allele-typing. Simultaneous electrophoresis of different AFLP samples in one lane (multimixing), as well as simultaneous amplification of AFLP fragments with different primer combinations in one reaction (multiplexing), displayed consistent results with respect to fragment number, polymorphic peaks and correct size-calling. The accuracy of semi-automated co-dominant analysis for hemizygous AFLP markers in an F2 population was too low, proposing the use of dominant allele-typing defaults. Nevertheless, the efficiency of genetic mapping, especially of complex plant genomes, will be accelerated by combining the presented genotyping procedures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.