Abstract
The photoreceptor phoborhodopsin (ppR; also called sensory rhodopsin II) forms a complex with its cognate the Halobacterial transducer II (pHtrII) in the membrane, through which changes in the environmental light conditions are transmitted to the cytoplasm in Natronomonas pharaonis to evoke negative phototaxis. We have applied a fluorescence resonance energy transfer (FRET)-based method for investigation of the light-induced conformational changes of the ppR/pHtrII complex. Several far-red dyes were examined as possible fluorescence donors or acceptors because of the absence of the spectral overlap of these dyes with all the photointermediates of ppR. The flash-induced changes of distances between the donor and an acceptor linked to cysteine residues which were genetically introduced at given positions in pHtrII(1-159) and ppR were determined from FRET efficiency changes. The dye-labeled complex was studied as solubilized in 0.1% n-dodecyl-beta-D-maltoside (DDM). The FRET-derived changes in distances from V78 and A79 in pHtrII to V185 in ppR were consistent with the crystal structure data (Moukhametzianov, R. et al. [2006] Nature, 440, 115-119). The distance from D102 in pHtrII linker region to V185 in ppR increased by 0.33 angstroms upon the flash excitation. These changes arose within 70 ms (the dead time of instrument) and decayed with a rate of 1.1 +/- 0.2 s. Thus, sub-angstrom-scale distance changes in the ppR/pHtrII complex were detected with this FRET-based method using far-red fluorescent dyes; this method should be a valuable tool to investigate conformation changes in the transducer, in particular its dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.