Abstract
Floating Treatment Wetlands (FTWs) are an emerging ecological engineering technology being applied the restoration of eutrophic urban water bodies. Documented water-quality benefits of FTW include nutrient removal, transformation of pollutants, and reduction in bacterial contamination. However, translating findings from short-duration lab and mesocosm scale experiments, into sizing criteria that might be applied to field installations is not straightforward. This study presents the results of three well established (>3 years) pilot-scale (40–280 m2) FTW installations in Baltimore, Boston, and Chicago. We quantify annual phosphorus removal through harvesting of above-ground vegetation and find an average removal rate of 2 g-P m−2. In our own study and in a review of literature, we find limited evidence of enhanced sedimentation as a pathway for phosphorus removal. In addition to water-quality benefits, FTW planted with native species, provide valuable wetland habitat; and theoretically improve ecological function. We document efforts to quantify the local effect of FTW installations on benthic and sessile macroinvertebrates, zooplankton, bloom-forming cyanobacteria, and fish. Data from these three projects suggest that, even on a small scale, FTW produce localized changes in biotic structure that reflect improving environmental quality. This study provides a simple and defensible method for sizing FTW for nutrient removal in eutrophic waterbodies. We propose several key research pathways which would advance our understanding of the effects FTW have on the ecosystem they are deployed in.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.