Abstract

The main goal of this study is to test the utility of calyculin A induced G2-PCC assay as a biodosimetry triage tool for assessing a wide range of low and acute high radiation dose exposures of photons. Towards this initiative, chromosome aberrations induced by low and high doses of x-rays were evaluated and characterized in G2-prematurely condensed chromosomes (G2-PCCs) by fluorescence in situ hybridization (FISH) using human centromere and telomere specific PNA (peptide nucleic acid) probes. A dose dependent increase in the frequency of dicentric chromosomes was observed in the G2-PCCs up to 20 Gy of x-rays. The combined yields of dicentrics and rings in the G2-PCCs showed a clear dose dependency up to 20 Gy from 0.02/cell for 0.1 Gy to 14.98/cell for 20 Gy. Centric rings were observed more frequently than acentric ring chromosomes in the G2-PCCs at all the radiation doses from 1 Gy to 20 Gy. A head-to-head comparison was also performed by FISH on the yields of chromosome aberrations induced by different doses of x-rays (0 Gy -7.5 Gy) in colcemid arrested metaphase chromosomes and calyculin A induced G2-PCCs. In general, the frequencies of dicentrics, rings and acentric fragments were slightly higher in G2-PCCs than in colcemid arrested metaphase chromosomes at all the radiation doses, but the differences were not statistically significant. To reduce the turnaround time for absorbed radiation dose estimation, attempt was made to obtain G2-PCCs by reducing the culture time to 36 hrs. The absorbed doses estimated in x-rays irradiated (0,1,2 and 4 Gy) G2-PCCs after 36 hrs of culture were grossly like that of G2-PCCs and colcemid arrested metaphase chromosomes prepared after 48 hrs of culture. Our study indicates that the shortened version of calyculin A induced G2-PCC assay coupled with the FISH staining technique can serve as an effective triage biodosimetry tool for large-scale radiological/nuclear incidents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.