Abstract

SUMMARY This paper revisits and extends the adjoint theory for glacial isostatic adjustment (GIA) of Crawford et al. (2018). Rotational feedbacks are now incorporated, and the application of the second-order adjoint method is described for the first time. The first-order adjoint method provides an efficient means for computing sensitivity kernels for a chosen objective functional, while the second-order adjoint method provides second-derivative information in the form of Hessian kernels. These latter kernels are required by efficient Newton-type optimization schemes and within methods for quantifying uncertainty for non-linear inverse problems. Most importantly, the entire theory has been reformulated so as to simplify its implementation by others within the GIA community. In particular, the rate-formulation for the GIA forward problem introduced by Crawford et al. (2018) has been replaced with the conventional equations for modelling GIA in laterally heterogeneous earth models. The implementation of the first- and second-order adjoint problems should be relatively easy within both existing and new GIA codes, with only the inclusions of more general force terms being required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.