Abstract

The finite element method is applied to the spatial variables of multi-group neutron transport equation in the two-dimensional cylindrical (r, z) geometry. The equation is discretized using regular rectangular subregions in the (r, z) plane. The discontinuous method with bilinear or biquadratic Lagrange's interpolating polynomials as basis functions is incorporated into a computer code FEMRZ. Here, the angular fluxes are allowed to be discontinuous across the subregion boundaries. Some numerical calculations have been performed and the results indicated that, in the case of biquadratic approximation, the solutions are sufficiently accurate and numerically stable even for coarse meshes. The results are also compared with those obtained by a diamond difference S n code TWOTRAN-II. The merits of the discontinuous method are demonstrated through the numerical studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.