Abstract

The subject of this paper is the numerical simulation of the interaction of two-dimensional incompressible viscous flow and a vibrating airfoil, which can rotate around the elastic axis and oscillate in the vertical direction. The numerical simulation consists of the finite element approximation of the Navier–Stokes equations coupled with the system of ordinary differential equations describing the airfoil motion. The arbitrary Lagrangian–Eulerian (ALE) formulation of the Navier–Stokes equations, stabilization the finite element discretization and coupling of both models is discussed. Moreover, the Reynolds averaged Navier–Stokes (RANS) system of equations together with the Spallart–Almaras turbulence model is also discussed. The computational results of aeroelastic calculations are presented and compared with the NASTRAN code solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.