Abstract

ABSTRACT Bioclogging is a commonly encountered operational issue that lowers hydraulic conductivity and the overall performance of the infiltration systems. In this paper, a novel processing for alleviating bioclogging by filter media surface hydrophobic modification was presented. Two-dimensional porous media cells were used to observe the influence of hydrophobic modification on biofilm growth in the pore structure. Moreover, two continuous-flow columns packed with gravel, one of which half gravel was hydrophobically modified, were operated with artificial wastewater to verify the effect of hydrophobic modification on bioclogging alleviation. The results showed that the biofilm growth in the cell with hydrophobic modification was slow, and the biomass was less and liable to wipe off after hydrophobic treatment. Meanwhile, the hydraulic efficiency of the flow seepage field was also improved after hydrophobic treatment. The column tests results showed that the hydraulic conductivity of the filter bed with hydrophobic modification (Column B) decreased more slowly than that of another without hydrophobic modification (Column A). Column B had the hydraulic conductivity (k) of 0.66 cm/s in the final stage of the experiment, while the k of Column A was 0.14 cm/s. It verified that hydrophobic modification of partial filter media can alleviate the bioclogging problem of the infiltration systems to some extent. The results provide a new idea and potential technical support for solving bioclogging problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call