Abstract
Purpose The purpose of this paper is to analyze the aerodynamic improvements obtained in a wing section with a NACA 0018 airfoil manufactured using the fused deposition modeling (FDM) technique with regard to a smooth surface made by milling. The creation of micro-riblets on the surface of the airfoil, due to the deposition of the material layer by layer, improves the general aerodynamic performance of the parts, provided that the riblets are parallel to the flow line. The incidence of the thickness of the thread deposited in each layer – to be the variable on which the geometry of the riblets is based – was studied. Design/methodology/approach The wing section was designed using 3D software. Three different models were designed by rapid prototyping, using additive and subtractive manufacturing. Two of the profiles were manufactured using FDM varying the thickness of the layer to be able to compare the aerodynamic improvements. The third model was manufactured using a subtractive rapid prototyping machine generating a smooth surface profile. These three models were tested inside the wind tunnel to be able to quantify the aerodynamic efficiency according to the geometry and the riblets size. Findings The manufacture of an aerodynamic profile using FDM provides, in addition to the lightness and the ability to design parts with complex geometries, an improvement in the aerodynamic efficiency of 10 per cent compared with profiles with a smooth surface. Practical implications With the aerodynamic advantage gained through the use of FDM positions, the additive manufacturing serves as an excellent alternative for the manufacture of lightweight aerodynamic parts, with low structural loading and with low Reynolds number (∼5·105). This technological advantage would be applied to the UAV (unmanned aerial vehicle) industry. Originality/value The study carried out in this article demonstrates that the use of FDM as a manufacture process of end-used parts that are subject to movement generates an additional advantage that had not been considered. The additive manufacturing allows us to directly manufacture riblets by creating the necessary surface so as to reduce the aerodynamic drag.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.