Abstract

Permitting superheavy loads may increase the rate of pavement damage and the cost of maintenance. An analysis of a proposed superheavy load route (FM519) to evaluate the potential pavement damage caused by a planned superheavy load move is presented. Falling weight deflection (FWD) tests and backcalculations of layer moduli were performed on the FM519. FWD tests and backcalculation of layer moduli were performed on the pavement before and after the superheavy load was moved. ELSYM5 and BISAR were used to evaluate the pavement responses using the backcalculated layer moduli from FWD data. The predictions of surface deflections from ELSYM5 and BISAR were close to (within 10 percent of) the measured deflections from FWD tests. The FWD data and analyses show that the existing pavement structure is adequate for the planned superheavy load move. Finally, the permit was issued with the condition that the transport vehicle should be kept within the travel lanes and away from the shoulder whenever possible. FWD tests were conducted after the superheavy load move and comparisons with before superheavy load move were made. T-tests were performed to check for significant difference at the 95 percent confidence level. T-tests showed that there is no significant difference between before and after superheavy load move. Also, no significant distresses due to this superheavy load were observed after the move, and the pavement condition is consistent with the analysis performed to issue the permit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.