Abstract

This research work involved using factorial experimental design techniques to investigate the adsorption of hexavalent chromium from an aqueous solution on medlar activated carbon. A 24 full factorial experimental design was employed to determine the optimum values and degree of importance of parameters: pH, initial Cr (VI) concentration, adsorbent dose, and contact time at two levels. The optimized conditions for hexavalent chromium Cr (VI) removal were at initial pH 1.5, 5 mg.L−1Cr (VI), adsorbent dose 6 mg, and 60 min adsorption time. The results predicted a good agreement between the predicted values (R2= 0.9909), as obtained by the model, and the experimental value (R2= 0.9977). The main effects and interaction effects were analyzed using analysis of variance (ANOVA), F-test and P-values to define the most important process variables affecting Cr (VI) adsorption. The most significant variables were therefore the pH of the solution and the adsorbent dose. Therefore, the present results demonstrate that medlar activated carbon should be regarded as a low-cost alternative for removing Cr (VI) from an aqueous solution. The adsorption data were evaluated by Langmuir, Freundlich, and Dubinin-Radushkevich isotherms. The results showed that the Langmuir isotherm model best describes the equilibrium adsorption with a high correlation coefficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call