Abstract
ABSTRACTOne often encounters numerical difficulties in solving linear matrix inequality (LMI) problems obtained from H∞ control problems. For semidefinite programming (SDP) relaxations for combinatorial problems, it is known that when either an SDP relaxation problem or its dual is not strongly feasible, one may encounter such numerical difficulties. We discuss necessary and sufficient conditions to be not strongly feasible for an LMI problem obtained from H∞ state feedback control problems and its dual. Moreover, we interpret the conditions in terms of control theory. In this analysis, facial reduction, which was proposed by Borwein and Wolkowicz, plays an important role. We show that the dual of the LMI problem is not strongly feasible if and only if there exist invariant zeros in the closed left-half plane in the system, and present a remedy to remove the numerical difficulty with the null vectors associated with invariant zeros in the closed left-half plane. Numerical results show that the numerical stability is improved by applying it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.