Abstract

We study the possibility of application of Faber polynomials in proving some combinatorial identities. It is shown that the coefficients of Faber polynomials of mutually inverse conformal mappings generate a pair of mutually invertible relations. We prove two identities relating the coefficients of Faber polynomials and the coefficients of Laurent expansions of the corresponding conformal mappings. Some examples are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.