Abstract
AimsBacterial infection is a significant factor contributing to the deterioration of wounds, and the misuse of antibiotics has exacerbated bacterial resistance. Therefore, there is an urgent need to develop a novel antibacterial strategy to replace conventional therapies. This study aims to construct a self-activated cascade reaction nanozyme, f-FeNC@GOx, which triggers a cascade reaction in the presence of glucose. This cascade reaction generates highly toxic hydroxyl radicals (OH), thereby achieving the goal of eliminating bacteria and promoting wound healing. Material and methodsIn vitro antibacterial experiments, bacterial spread plate method, Live/Dead staining, and crystal violet staining were conducted to analyze the antibacterial ability and mechanism of f-FeNC@GOx. In vivo experiments, a mouse wound model was established, and H&E and Masson staining of wound tissues were performed to assess the antibacterial activity of the f-FeNC@GOx in vivo. Key findingsThe in vivo and in vitro experiments confirmed that f-FeNC@GOx exhibited significant antibacterial effect against both Staphylococcus aureus and Escherichia coli in the presence of glucose. Furthermore, it showed optimal wound healing performance in the wound models. SignificanceThese findings suggested that f-FeNC@GOx was a novel and effective antibacterial nanomaterial, which provided a promising antibacterial strategy using nanoenzyme based cascade reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.