Abstract
This paper proposes a new approach based on combined Wavelet Transform-Extreme Learning Machine (WT-ELM) technique for fault section identification (whether the fault is before or after the series capacitor as observed from the relay point), classification and location in a series compensated transmission line. This method uses the samples of fault currents for half cycle duration from the inception of fault. The features of fault currents are extracted by first level decomposition of the current samples using discrete wavelet transform (DWT) and the extracted features are applied as inputs to ELMs for fault section identification, classification and location. The feasibility of the proposed method has been tested on a 400 kV, 300 km series compensated transmission line for all the ten types of faults using MATLAB simulink. On testing 28,800 fault cases with varying fault resistance, fault inception angle, fault distance, load angle, percentage compensation level and source impedance, the performance of the proposed method has been found to be quite promising. The results also indicate that the proposed method is robust to wide variation in system and operating conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.