Abstract

In the present study the influence and application of a newly developed external lower punch vibration system for an improved die filling on a running rotary tablet press was investigated. Tablets were manufactured at different conditions (with and without vibration) and characterized regarding their direct compressibility and mechanical stability. Thus, two typical pharmaceutical binders for direct compression (Parmcel 102 and Tablettose® 80) were compared with two binders unsuitable for direct compression (Ceolus® KG1000 and GranuLac® 200). The powders were characterized by helium pycnometry, laser diffraction, scanning electron microscopy, and by determination of the powder flow. Furthermore, a novel technique to determine the occurrences of segregation within a tablet after manufacturing was introduced. For this purpose, a powder blend containing one spray-colored type of microcrystalline cellulose (Vivapur® 200) were prepared. It was shown that under application of externally applied lower punch vibration, the powder flow into the die increased and thus the die filling process was significantly improved. Hence, it was possible to manufacture tablets from powders, which are actually unsuitable for direct compression. In addition, the mechanical stability of the produced tablets was distinctly improved by application of lower punch vibration, whereby the occurrence of segregation was comparatively low. In summary, lower punch vibration allows a more efficient die filling, whereby the powder flow as well as mechanical stability of the tablets are improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.