Abstract

In the cold rolling process, edge cracks, particularly those near the welded zone, can inadvertently lead to strip rupture. This study employed the extended finite element method (XFEM) to analyze the crack propagation behavior in welded strip steel during cold rolling. Various tests such as the tensile test, essential work of fracture (EWF) test, spherical indentation method, and elastoplastic finite element simulations were conducted to determine the maximum principal stress and fracture energy utilized in XFEM for the base metal and weld metal, respectively. A continuous cold rolling model was established to investigate the crack propagation behaviors in the base metal, weld metal, and the interface between the base and weld metal. In the continuous rolling process, the crack propagation and expansion speed in the base metal are much larger than that of the weld zone. In addition, the base metal at the back end of the rolled piece is more prone to fracture than the base metal at the front end.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call