Abstract

In recent works by Wu and Wang a class of explicit symplectic integrators in curved spacetimes was presented. Different splitting forms or appropriate choices of time-transformed Hamiltonians are determined based on specific Hamiltonian problems. As its application, we constructed a suitable explicit symplectic integrator for surveying the dynamics of test particles in a magnetized Reissner–Nordström spacetime. In addition to computational efficiency, the scheme exhibits good stability and high precision for long-term integration. From the global phase-space structure of Poincaré sections, the extent of chaos can be strengthened when energy E, magnetic parameter B, or the charge q become larger. On the contrary, the occurrence of chaoticity is weakened with an increase of electric parameter Q and angular momentum L. The conclusion can also be supported by fast Lyapunov indicators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call