Abstract
Systematic reuse of parts is not often achievable in a sustainable way. The methods associated with the available disassembly technology rarely addresses non-destructive disassembly approach that favor reuse as an end-of-life (EoL) strategy. In this sense, this paper aims to propose a method able to identify best opportunities and thus, focus on the designers’ efforts during the early stages of product development, with major repercussions during the product EoL. To build the method, the Design Science Research Methodology (DSRM) is adopted. The method scope relies on material and energy flows measured in terms of exergy that ultimately depicts for energy efficiency, environmental impact, cost and technical efficiency. By means of a case study, findings challenge common sense by quantitatively showing how small subsystems with 3% of mass can hold nearly 200 times more embodied exergy than another with 50% of the mass and thus, may greatly affect product design and EoL results. Therefore, the adoption of the method may prove useful for establishing easy-to-use design practices that favor green engineering, circular economy and environmental policies. An exergy-based approach would unbiasedly drive Reuse EoL that facilitate Design for the Environment (DfE) as well as focus efforts on specific disassembly technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.