Abstract

In this paper, a new encoding scheme is presented for learning the Takagi–Sugeno (T–S) fuzzy model from data by genetic algorithms (GAs). In the proposed encoding scheme, the rule structure (selection of rules and number of rules), the input structure (selection of inputs and number of inputs), and the antecedent membership function (MF) parameters of the T–S fuzzy model are all represented in one chromosome and evolved together such that the optimisation of rule structure, input structure, and MF parameters can be achieved simultaneously. The performance of the developed evolving T–S fuzzy model is first validated by studying the benchmark Box–Jenkins nonlinear system identification problem and nonlinear plant modelling problem, and comparing the obtained results with other existing results. Then, it is applied to approximate the forward and inverse dynamic behaviours of a magneto-rheological (MR) damper of which identification problem is significantly difficult due to its inherently hysteretic and highly nonlinear dynamics. It is shown by the validation applications that the developed evolving T–S fuzzy model can identify the nonlinear system satisfactorily with acceptable number of rules and appropriate inputs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.