Abstract

In this study, the equilibrium partitioning approach was used to derive the sediment quality criteria (SQC) recommended values of eight heavy metals (Cr, Cu, Pb, Zn, Cd, As, Fe and Mn) for surface sediments taken from Lake Chaohu. The concentration of the heavy metal in the interstitial water (CIW) was determined by the film diffusion gradient technology to obtain the metal partitioning coefficient (KP). Moreover, the metal fractionation of the sediments were analyzed using European Community Bureau of Reference sequential extraction procedure and the partitioning of bound phases including total organic carbon (TOC), grain sizes and acid volatile sulfide (AVS) were also investigated. The values of KP for Cr, Cu, Pb, Zn, Cd, As, Fe and Mn were 3,924.84, 2,276.23, 17,811.30, 738.35, 10,986.54, 718.74, 5,875.34 and 341.20 L/kg, respectively. Sediment quality criteria were normalized on the basis of fine materials, AVS, TOC and the residual metals (MR). SQC values for Cr, Cu, Pb, Zn, Cd, As, Fe and Mn based on Chinese surface water quality criteria were derived with the values of 78.53, 56.95, 362.93, 74.68, 23.90, 71.84, 3,546.53 and 68.42 mg/kg, respectively. The suggested SQC values in this study were compared SQCs from different countries and areas, which indicated SQCs from different countries or regions appeared to have great discrepancies attributed to the difference of the physical and chemical characteristics of sediments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.