Abstract

BackgroundAccurate age estimation is vital for clinical and forensic purposes. With the rapid advancement of artificial intelligence(AI) technologies, traditional methods relying on tooth development, while reliable, can be enhanced by leveraging deep learning, particularly neural networks. This study evaluated the efficiency of an AI model by applying the entire panoramic image for age estimation. The outcome performances were analyzed through supervised learning (SL) models.MethodsTotal of 27,877 dental panorama images from 5 to 90 years of age were classified by 2 types of grouping. In type 1 they were classified by each age and in type 2, applying heuristic grouping, the age over 20 years were classified by every 5 years. Wide ResNet (WRN) and DenseNet (DN) were used for supervised learning. In addition, the analysis with ± 3 years of deviation in both types were performed.ResultsFor the DN model, while the type 1 grouping achieved an accuracy of 0.1016 and F1 score of 0.058, the type 2 achieved an accuracy of 0.3146 and F1 score of 0.2027. Incorporating ± 3years of deviation, the accuracy of type 1 and 2 were 0.281, 0.7323 respectively; and the F1 score were 0.1768, 0.6583 respectively. For the WRN model, while the type 1 grouping achieved an accuracy of 0.1041 and F1 score of 0.0599, the type 2 achieved an accuracy of 0.3182 and F1 score of 0.2071. Incorporating ± 3years of deviation, the accuracy of type 1 and 2 were 0.2716, 0.7323 respectively; and the F1 score were 0.1709, 0.6437 respectively.ConclusionsThe application of entire panorama image data for supervised with classification by heuristics grouping with ± 3years of deviation for supervised learning models and demonstrated satisfactory outcome for the age estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.