Abstract

Electro-mechanical impedance (EMI) is very effective for detecting the local incipient damages including small cracks in structures and has been validated by many experimental investigations. Meanwhile, some analytical models have been proposed to deal with dynamics of structures for health monitoring. However, there is little analytical work done to relate EMI signatures with crack parameters at ultrasonic frequencies. In this paper, a modified model combining EMI technique and reverberation matrix method (RMM) is proposed to quantitatively correlate crack parameters in continuous beams with high-frequency signatures for structural health monitoring. The model is based on Timoshenko beam theory with the crack treated as a massless rotational spring. The bonded PZT wafers are restricted to one-dimensional axial vibration. A shear lag model is adopted to simulate the interfacial bonding between PZT patches and the host beam. For the first time, an analytical expression of impedance (or admittance) involving information of cracks in this coupled smart structure system is derived. Comparison with existent numerical and experimental results is presented to validate the analysis. Based on this model, EMI signatures extracted from the PZT wafers can be used to identify cracks in a continuous beam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.