Abstract

A clean and energy-efficient power system can be developed by the combination of hydrogen (as an energy carrier) and fuel cells (as power generation units); such system has the potential to compete with the current energy consumption pattern of direct combustion of fossil fuels. A novel CO/CO2 purification process, called the elevated-temperature pressure swing adsorption (ET-PSA), is coupled into an integrated gasification fuel cell (IGFC) power plant system in this work. A quantitative evaluation standard for the purification energy consumption is developed by considering both the net power efficiency loss of the IGFC after introducing the purification unit, and the total CO/CO2 removal rate. The sensible heat loss of syngas and the thermal regeneration of the saturated adsorbents are avoided; consequently, the calculated energy consumption of the ET-PSA (1.11 MJ/kg) process using the ideal purification unit as the base case is 36.2% lower than of the conventional solvent absorption method. Alternatively, high-temperature steam is consumed in the ET-PSA process during the rinse and purge steps, which leads to a decrease in the output power of the steam turbine. The purification energy consumption of the ET-PSA process can be further reduced either by increasing the hydrogen recovery ratio or by reducing the total steam consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call